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Aliasing, Non-Linear Instability, and Diffusion 

Note: There exist several sign errors within the course textbook in its mathematical formulation 

for aliasing. Any discrepancies between the notes below and the course textbook should be 

reconciled in favor of the notes below, which are believed to be correct.  

Aliasing and Non-Linear Instability 

Our consideration of numerical instability to this point has emphasized determining the stability 

criteria for linear forcing terms. Generally speaking, linear numerical stability is said to exist when 

the amplitude of the solution does not grow exponentially with time (e.g., 1
tIe


). 

The primitive equations, however, contain non-linear forcing terms. Consider, for instance, a one-

dimensional advection equation for the zonal velocity u: 
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The stability of this equation can be evaluated as before, from which a stability criterion may be 

obtained. This stability criterion is dependent upon the chosen combination of temporal and spatial 

finite differencing schemes and must be adhered to in order to ensure numerical stability. 

However, there exists a second potential source of non-linear instability that must be considered 

when determining numerical stability. Aliasing occurs when two waves represented on a model 

grid interact and produce fictitious waves and an erroneous redistribution of energy within wave 

space. Aliasing can arise in any model that discretizes the primitive equations with finite difference 

approximations in an Eulerian framework. In the following, we develop a framework for aliasing 

that is independent of the chosen temporal and spatial finite differencing schemes. 

Note that aliasing does not impact models that use semi-Lagrangian methods, wherein non-linear 

terms are encapsulated within the total derivative-based (i.e., flow-following) formulation of the 

primitive equations. Aliasing also does not impact models that use spectral methods, wherein 

model variables and their partial derivatives are treated analytically and potentially troublesome 

wave interactions are not permitted. The absence of aliasing with such methods is one of several 

reasons why they have gained widespread use in operational numerical weather prediction. 

The byproduct of aliasing is the accumulation of erroneous wave energy at short wavelengths 

(generally speaking, ≤ 4∆x), which can lead to the model solution becoming unstable with time. 

Previously, we demonstrated that short wavelengths have large truncation error (poorly-resolved), 

are among those whose amplitudes grow most rapidly if the linear numerical stability criterion is 

violated, and are associated with significant departures of phase speed and group velocity from the 

true advective velocity (numerical dispersion). Thus, aliasing is yet another reason why shorter 
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wavelengths are particularly problematic for grid-based numerical weather prediction and thus 

why implicit or explicit damping of such wavelengths can be beneficial. 

 

Analytic Framework for Aliasing 

We follow the example of the course text. Consider the non-linear one-dimensional advection 

equation above. As we have done previously, let us assume a wave-like solution for u. For 

simplicity, assume that this wave-like solution is given by the linear superposition of cosine waves, 

e.g., 
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rather than sine and cosine waves as before. Here, wavenumber km = 2πm/L, where m is a zonal 

wavenumber and L is the domain length. Note the slight difference in how this k is defined relative 

to that in our lecture on linear numerical stability, where k = 2π/L (where L was wavelength). Here, 

km is defined specific to a given wavelength. The ratio of m to L is the inverse wavelength, such 

that the ratio of L to m defines the wavelength (e.g., m = 1 defines a wave with wavelength L, m = 

2 defines a wave with wavelength L/2, etc.). In other words, m is the number of waves over the 

domain length L. Thus, this formulation for km is functionally equivalent to that for k before. 

The first partial derivative of u with respect to x can be obtained analytically and is given by: 
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Consequently, 
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Note that the indices m and n may be switched without changing the result. The separate notation 

for each term (m for u, n for its partial derivative) is used to indicate that a wave in u of a given 

wavelength may interact with a wave in ∂u/∂x of another wavelength. 

Or, expanding the summation notation, 
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In the above, for m = 0, cos(kmx) = cos(0) = 1, so that a0 cos(k0x) = a0. For n = 0, sin(knx) = sin(0) 

= 0, so that a0k0 sin(k0x) = 0. 

Generally, the product of any two waves can be expressed as: 

   xkxkkaa mnnnm cossin  or, equivalently,     xkxkkaa nmmmn cossin  

We can simplify this expression. Note that sin c cos d, where c and d are generic variables, can be 

expressed using a trigonometric identity as follows: 

2
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For c = knx and d = kmx, we obtain: 

         xkkxkkkaaxkxkkaa mnmnnnmmnnnm  sinsin
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Or, substituting for kn and km, 
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There exist two waves defined by the above – the n + m wave and the n – m wave. Note, as before, 

that the indices m and n may be swapped without changing the result. 

In physical space, where all wavenumbers are possible, this is not a problem. However, on a model 

grid, only waves of wavelength 2∆x and larger may be represented. Recall that the ratio of L to m 

describes a wave’s wavelength. Consider a one-dimensional model grid with jmax grid points, such 

that jmax∆x = L. Thus, for the 2Δx wave, we can determine m as follows: 

x
m
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Solving for m, we obtain jmax/2. This represents the maximum value of n + m that may be 

represented on a model grid. You can prove this by considering other wavelengths longer than 2∆x 

in the above – e.g., for the 3∆x wave, m equals jmax/3, which is smaller than jmax/2.  

Thus, the following inequality must hold in order for the n + m wave, defined by the product of u 

and ∂u/∂x, to be represented on the model grid: 

2
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Or, stated in the inverse, the following inequality describes the case where the n + m wave, defined 

by the product of u and ∂u/∂x, is unable to be represented on the model grid: 

2

maxj
mn   

Let us consider this unresolvable wave in more detail. The inequality describing this wave can 

alternatively be written as: 

sjmn  max  

Here, s is some generic wavenumber, where 
2

maxj
s  . Thus, all values of jmax – s are greater than 

jmax/2. Considering only the n + m wave, if we substitute this relationship for n + m, we obtain: 
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However, because we previously defined L = jmax∆x, we can also substitute for L in the above. 

Further, the position x along the wave is equal to the product of the grid index j and the grid spacing 

∆x, such that we obtain: 
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Simplifying the terms inside of the sin function, we obtain: 
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We can now apply another trigonometric identity, 
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Doing so, we obtain: 
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However, for all grid indices j (which are positive integers), sin(2πj) = 0 and cos (2πj) = 1. Thus, 

the above expression simplifies to the following: 
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Noting again that x = j∆x and L = jmax∆x, this can be rewritten as: 
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Because this expression results from the unresolvable m + n wave, we state that the unresolvable 

wave shows up on the model grid as one that has wavenumber s, where  mnjs  max . 

What does this mean? Let us consider the interaction of two waves, for instance a 2∆x wave and a 

4∆x wave. For the 2∆x wave, m = jmax/2. For the 4∆x wave, n = jmax/4. Please see the discussion at 

the bottom of page three of these notes to recall the basis for these definitions. In this case, 
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This defines a wave with wavelength x
3

4
, which cannot be resolved on the model grid. But, 
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This defines a wave with wavelength 4∆x, which can be resolved on the model grid! The 

unresolvable wave actually is resolved on the model grid, but in a non-physical way: it is aliased 

to a wavelength that is resolvable. Stated differently, the energy associated with the wave that is 

unresolved is folded (to borrow a term from radar meteorology) over the shortest-resolvable wave 

(the 2∆x wave) into a wave that is resolved on the model grid. 

Let us consider the idea of folding in a bit more detail. Consider a model grid with jmax = 24 grid 

points. We can obtain the values of m and n for the 2∆x and 4∆x waves on this grid as follows. 

Recall that L = jmax∆x = 24∆x and the ratio of L to m (or n) defines the wavelength of the wave. 

Thus, for the 2∆x wave, 
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And, for the 4∆x wave, 
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Thus, m + n = 12 + 6 = 18. As a result, s = jmax – (n + m) = 24 – 18 = 6. Since this is equal to n, the 

wave with wavenumber s in this case is the 4∆x wave, as before. The unresolved wavenumber was 

6 greater than the maximum-resolvable wavenumber (12, defined by the 2∆x wave), while the 

wavenumber to which it is aliased is 6 smaller than the maximum-resolvable wavenumber. This is 

the manifestation of folding over the shortest-resolvable wavelength, which is illustrated in Figure 

1 below. 

 

Figure 1. Conceptual illustration of how the interaction of two waves with m + n  > jmax/2 produces 

aliasing, manifest as the folding of wave energy across the shortest-resolvable wavelength, for jmax 

= 24. Here, the unresolvable wavenumber that results from the interaction of two waves is folded 

over the lowest-resolvable wave (the 2Δx wave) to a resolved wavelength. Adapted from Warner 

(2011), their Figure 3.32. 

Note, however, that the interaction between two waves does not always result in aliasing. Consider, 

for instance, the interaction of two well-resolved waves on this grid: the 12∆x wave (m = 2) and 

the 8∆x wave (n = 3). Here, m + n = 2 + 3 = 5, which defines a wave with wavelength 4.8∆x that 

can be resolved on the model grid. Only where m + n > jmax/2 does aliasing result. This is generally 

limited to interactions between two resolved but relatively short wavelength features. 

Let us continue to consider this model grid with jmax = 24 grid points. Allowable values of m and 

n each range from 0 to 12. There exist 42 distinct combinations of m and n that result in aliasing: 

Value(s) of n (or m) Value(s) of m (or n) 

12 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

11 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 

10 3, 4, 5, 6, 7, 8, 9, 10 
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9 4, 5, 6, 7, 8, 9 

8 5, 6, 7, 8 

7 6, 7 

 

This listing does not count duplicates; e.g., aliasing for n = 11 can also occur for m = 12, but this 

case is already accounted for by n = 12 and m = 11. One could follow a similar procedure to 

identify the distinct combinations (totaling 49) of m and n which do not result in aliasing. 

Of these 42 combinations, 30 of them result in m + n ≤ 18: six each for n between 9 and 12, four 

for n = 8, and two for n = 7. Why are we interested in m + n ≤ 18? Consider Figure 1. Unresolvable 

wavenumbers from 13 through 18 alias, or fold, to resolvable wavenumbers between 6 and 11. 

These identify waves with wavelengths of 2-4∆x, or those that are poorly resolved on the model 

grid. Thus, aliasing preferentially results in the artificial accumulation of wave energy at 

short, poorly-resolved wavelengths. 

When we introduced the concept of effective resolution earlier in the semester, we defined it as the 

smallest wavelength at which the modeled kinetic energy spectrum matches that from theory and 

observations. At smaller but still resolvable wavelengths, ideally the modeled kinetic energy 

spectrum is associated with less energy than that from theory and observations. Aliasing, however, 

can result in an excess accumulation of wave energy in short wavelengths, as the above discussion 

illustrates. This can result in a modeled kinetic energy spectrum with greater energy that that from 

theory and observations at short wavelengths. Examples of each are provided in Figure 2. 

 

Figure 2. Examples of modeled kinetic energy spectra relative to theory and observations (i.e., the 

“correct spectrum”) for (a) a case where numerical diffusion dampens short wavelengths (large 

wavenumber k, here expressed on a logarithmic axis) and (b) a case where aliasing is not controlled 

for by numerical diffusion, resulting in an excess of kinetic energy at short wavelengths (or large 

k). Reproduced from Warner (2011), their Figure 3.33. 
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This is problematic. We know short wavelengths have large truncation error, significant numerical 

dispersion, and often are those that most rapidly become unstable if the numerical stability criterion 

is violated. Amplifying the amount of energy contained within these wavelengths only exacerbates 

these problems. This is another illustrative example of the utility of numerical diffusion, whether 

implicit or explicit in nature. We now wish to consider explicit numerical diffusion in more detail. 

 

Numerical Diffusion 

Diffusion can be viewed as the spreading out, or smoothing, of atmospheric fields in all three 

spatial dimensions. As a result, diffusion is often characterized by damping, as it weakens gradients 

by reducing the magnitude of local maxima and minima (Figure 3). Physical diffusion, driven by 

turbulent eddies, is an important transporter of atmospheric fields. However, there also exist two 

forms of artificial, or numerical, diffusion: 

 Implicit numerical diffusion. This is manifest through damping properties possessed by 

certain finite differencing schemes, resulting in the model solution being damped over time 

(i.e., when 1
tIe


). Specific characteristics of this damping, such as its scale selectivity 

and Courant number dependence, vary between finite differencing schemes. 

 Explicit numerical diffusion. This is manifest by adding an explicit damping term to the 

predictive equations for each model variable. Specific characteristics of this term, such as 

its stability, its wavelength dependence, the extent to which it dampens, and so on, vary 

between diffusion formulations and finite differencing schemes. 

Implicit numerical diffusion was covered with linear numerical stability. As noted above, only 

selected finite differencing schemes are associated with implicit numerical diffusion. For example, 

the centered-in-time and second-order centered-in-space differencing schemes are not associated 

with implicit numerical diffusion, while the forward-in-time and Runge-Kutta 3 time differencing 

schemes are associated with implicit numerical diffusion. Specific details of the implicit numerical 

diffusion vary between differencing schemes. Please refer to the earlier lecture on linear numerical 

stability for specific examples. 
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Figure 3. Conceptualization of diffusion, whether physical or artificial in nature. In panel (a), a 

sharp horizontal gradient in temperature exists in the middle of the grid. In panel (b), diffusion has 

weakened this gradient and reduced the magnitude of the local temperature minima and maxima 

that were present in panel (a). 

 

Herein, we focus upon explicit numerical diffusion, or that which arises due to the inclusion of an 

explicit diffusion term in a model’s predictive equations. Though non-physical in nature, explicit 

numerical diffusion may nonetheless be beneficial if it can dampen shorter wavelength, poorly 

resolved phenomena while largely not affecting longer wavelength phenomena. Damping of short 

wavelength phenomena is desirable given the problems posed by such features – truncation error, 

linear numerical stability, numerical dispersion, and aliasing – discussed over the course of the 

semester to date. 
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Numerical Formulation for Explicit Diffusion 

A generalized explicit numerical diffusion term is given by:  

  hK
t

h n

n

n




 1
21  

Here, h is any model dependent variable, n is the order of the diffusion operator (n = 0, 2, 4, 6…), 

and Kn is the diffusion (or damping) coefficient. 

Consider the zeroth-order (n = 0) diffusion, i.e., 

hK
t

h
0
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This defines a diffusion that is applied directly to h. It acts uniformly over all wavelengths. Such 

uniform damping is typically not employed within numerical models except perhaps near the 

lateral boundaries. 

Consider the second-order (n = 2) diffusion, i.e., 

hK
t

h 2

2
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This defines a diffusion that acts on the Laplacian of h. Recall that the Laplacian of a field has the 

opposite sign of the field itself. As a result, where h is a maximum, h2  is a minimum and, 

consequently, h decreases with time. Conversely, where h is a minimum, h2  is a maximum and, 

consequently, h increases with time. The net result of this diffusion operator, therefore, is to reduce 

the magnitude of the gradient in h between the aforementioned maximum and minimum. 

This diffusion formulation is weakly scale-selective, wherein shorter wavelengths are modestly 

dampened more than are longer wavelengths. As the Laplacian’s magnitude is greatest for maxima 

or minima in the field being diffused, it does not introduce new maxima or minima to the field, a 

desirable trait. As compared to a second-order diffusion formulation, higher-order formulations 

are generally more scale-selective, damping shorter wavelengths (e.g., sharper gradients) more so 

than longer wavelengths. However, they can introduce new extrema, although methods (e.g., so-

called flux limiter methods) exist to mitigate this drawback. 

Let us consider the linear stability of a second-order diffusion operator using the forward-in-time, 

second-order centered-in-space differencing scheme, i.e., 
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As before, assume a wave-like solution for h of the form: 

   tkxittkxi RI eehehh
   ˆˆ  

where ω = ωR + iωI. If we substitute with this solution for h, expand the resulting exponential 

functions, and divide through by a common factor of 
 tkxit RI eeh

 ˆ , we obtain: 
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On the left-hand side of this equation, ti Re
   can be rewritten using Euler’s relations. For the right-

hand side of this equation, Euler’s relations result in  xkee xikxik   cos2 . Substituting these, 

we obtain: 
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Splitting this into its real and imaginary components, we obtain: 

 
 

  2cos21cos
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  0sin 
t

R
Ieti

  (imaginary) 

Recall that to evaluate the linear stability of this equation, we eliminate ωR from this system of 

equations, leaving only ωI or, more specifically, tIe
 . 

Because the exponential function in the imaginary equation cannot be equal to zero,  tRsin  

must equal zero in order for the equality in that equation to hold. The only values of ωR that result 

in   0sin tR  are 0 (such that ωR∆t = 0) and ∆t/π (such that ωR∆t = π). It can be shown that ωR 

= ∆t/π  is just a special form of the ωR = 0 case. Thus, we focus upon the ωR = 0 case. 

For ωR = 0, cos(ωR∆t) = 1 and the real component of the equation becomes: 
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This defines the multiplicative change in amplitude in h that occurs with each time step during the 

model integration for the forward-in-time, second-order centered-in-space differencing scheme 

applied to a second-order diffusion operator. 
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From this result, the stability criteria for this equation may be obtained, as was done in the “Linear 

Numerical Stability” lecture notes. The 2∆x wave limits the linear stability of this diffusion 

operator. Two stability criteria, one ensuring that 1
tIe

  (numerically stable) and one ensuring 

that 0
tIe

  (numerically stable with no change in wave phase), exist. These can be obtained by 

substituting these inequalities into the above equations and solving. 

We can define a value of K that dampens the 2∆x wave entirely at each time step (i.e., 0
tIe

 ). 

This criterion is given by: 
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If the inequality is replaced with an equal sign and the equation solved for K, we obtain: 
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If we use this as our value for K, the stability equation becomes: 
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If we plug in to this equation for k with values for wavelength L, we can determine the wavelength-

dependence, or scale-selectivity, of the damping function. This is depicted by the blue line in 

Figure 4. 

The same process as followed above can be used to determine the multiplicative change in h that 

occurs with each time step during the model integration for the forward-in-time, second-order 

centered-in-space differencing scheme applied to fourth- and sixth-order diffusion operators. 

Second-order centered-in-space finite difference approximations for the fourth and sixth partial 

derivatives, respectively, are given by the following: 
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The resulting equations for tIe
  for the fourth- and sixth-order diffusion operators are given by: 
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Using these equations, values of K that result in 0
tIe

  for the L = 2∆x wave may be obtained 

for these diffusion operators and the chose differencing scheme. These are given by: 
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 (fourth-order diffusion) 
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 (sixth-order diffusion) 

If we use these as our values for K, the stability equations become: 
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Plugging in to these equations for k with values for wavelength L allows us to determine the 

wavelength-dependence, or scale-selectivity, of the fourth- and sixth-order damping functions. 

These are depicted by the red and green lines, respectively, in Figure 4. 

 

Figure 4. Depiction of damping magnitude per time step, tIe
 , as a function of wavelength for 

second-, fourth-, and sixth-order diffusion operators using the forward-in-time, second-order 

centered-in-space finite differencing scheme. Note that for each diffusion operator, the value of K 

is chosen such that the 2∆x wave is entirely dampened at each time step. Adapted from Warner 

(2011), their Figure 3.34. 
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Figure 5. In each panel, the influence of diffusion – second-order in panel (a), sixth-order with a 

flux limited in panel (b) – upon an initial square wave over 100 model time steps is depicted. Note 

that the value of K for each diffusion operator is chosen such that the 2∆x wave is entirely 

dampened at each time step. As the second-order diffusion operator is less scale-selective than is 

the sixth-order diffusion operator, its effects upon the square wave extend across the wave rather 

than being localized to its sharp edges. Reproduced from Warner (2011), their Figure 3.35.  

For all damping functions, the magnitude of damping decreases as the wavelength increases. As 

the order of the diffusion operator increases, the extent to which longer wavelengths are dampened 

decreases. As a result, higher-order diffusion operators are preferable, so long as their weaknesses 

(e.g., creating new maxima or minima) can be mitigated by some means.  

The scale-selectivity of the second-order and sixth-order diffusion operators is again demonstrated 

in Figure 5. A one-dimensional (in x) model, and thus diffusion formulation, is again utilized. 

There is no advection within this model; only diffusion acts upon the initial wave. In this example, 

the initial wave is given by a square wave, which generally is not present within atmospheric fields 

but possesses sharp horizontal gradients that help to illustrate the scale-selectivity of the applied 

diffusion operators. The initial square wave extends over twenty-five grid points. The value of the 

diffusion coefficient K is again chosen so that the 2∆x wave is entirely dampened at each time step, 

and the model is integrated forward for 100 time steps. 

There are two primary wavelengths manifest through the initial square wave: that of the wave itself 

(25∆x given no corresponding negative portion of the wave) and that of the discontinuities along 

the edge of the wave (~2∆x). The less-scale-selective second-order diffusion operator dampens 

each of these wavelengths, resulting in both a weakening of the gradient across the edge of the 

square wave and a reduction in the amplitude of the wave itself. The more-scale-selective sixth-

order diffusion operator – which includes a flux-limiter correction term as noted above – also 
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weakens the gradient across the edge of the square wave, albeit to less extent than the second-order 

diffusion operator. The change in amplitude of the wave is negligible with this formulation, a 

desirable trait. 

We can also consider the scale-selectivity of the second-, fourth-, and sixth-order diffusion 

operators in light of the one-dimensional advection example we have extensively considered thus 

far this semester. An initial Gaussian wave is advected at a constant U = 10 m s-1 over a domain 

containing 100 grid points (∆x = 1 km) until it returns to its original location. The time step is 10 

s, such that the Courant number is 0.1. The centered-in-time, second-order centered-in-space finite 

differencing scheme is used to discretize the advection terms within this example.  

The influence of second-, fourth-, and sixth-order diffusion upon this solution is demonstrated in 

Figure 6. As the order of the diffusion operator increases, its scale-selectivity increases, such that 

its impact upon longer wavelength phenomena decreases. Though numerical dispersion is less 

evident in the second-order diffusion example, the amplitude of the primary wave is substantially 

reduced relative to both the physical wave and to that in the cases with higher-ordered diffusion 

operators. Thus, a trade-off exists, which motivates the use of more accurate finite differencing 

schemes that are less affected by numerical dispersion (among other attributes)! 

 

Figure 6. Fluid height h (m) after integrating the one-dimensional advection equation for 10,000 

s on the model grid described in the text above, with a Courant number of 0.1, for integrations 

utilizing no explicit numerical diffusion (top), a sixth-order diffusion operator (middle-top), a 

fourth-order diffusion operator (middle-bottom), and a second-order diffusion operator (bottom). 

Reproduced from Warner (2011), their Figure 3.26. 
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Figure 2 also demonstrates a utility of numerical diffusion – explicit, but in some applications also 

implicit – in mitigating the impacts of aliasing upon the model solution. Where aliasing results in 

an artificial buildup of wave energy at short, poorly-resolved wavelengths, numerical diffusion 

dampens this accumulation. Though the kinetic energy spectrum deviates from that given by 

theory and observations at wavelengths below the effective model resolution when damping is 

applied, the model is less likely to become numerically unstable. As this is desirable, we choose 

the horizontal grid spacing of our model simulations in light of the resulting effective resolution. 

For example, to resolve thunderstorms, we require ∆x < 4 km with an effective resolution of < 28 

km that is barely crude enough to encompass the area covered by larger thunderstorms. 

Formally, diffusion operators should be evaluated on horizontal surfaces (e.g., constant height 

surfaces) rather than on model surfaces, which for most modern models follow the terrain. Let us 

consider the example of a mountain, where the temperature at mountain top is often larger than 

that at the bottom of the mountain. Along a terrain-following surface, temperature would be a 

minimum at the top of the mountain and a maximum at the bottom of the mountain. Diffusion 

acting on the terrain-following surface would decrease the temperature at the bottom of the 

mountain and increase the temperature at the top of the mountain. This will locally increase the 

thickness of the column at mountain top, resulting in relatively low pressure at mountain top, into 

which air will converge due to friction. Diffusion calculated on horizontal surfaces would not lead 

to the development of this non-physical circulation. 

In WRF-ARW, diffusion may be computed on either model coordinate or horizontal surfaces, as 

controlled by the diff_opt option. Where terrain gradients are small, diffusion along coordinate 

surfaces may not be overly problematic. Where terrain gradients are large, such as near mountains, 

diffusion should be computed along horizontal surfaces. The WRF-ARW default is second-order 

diffusion along model coordinate surfaces. However, a sixth-order diffusion operator is also 

available. For model simulations where ∆x ≥ O(100 m), the diffusion coefficient Kn in the 

horizontal is determined from horizontal deformation. Vertical diffusion is handled, and thus Kn 

in the vertical is specified, by the chosen planetary boundary layer parameterization. More detail 

regarding explicit numerical diffusion within WRF-ARW may be found in Section 4.2 of the 

WRF-ARW Technical Document. 


